Who goes there?: selecting a robot to reach a goal using social regret
نویسندگان
چکیده
A common decision problem in multi-robot applications involves deciding on which robot, out of a group of N robots, should travel to a goal location, to carry out a task there. Trivially, this decision problem can be solved greedily, by selecting the robot with the shortest expected travel time. However, this ignores the inherent uncertainty in path traversal times; we may prefer a robot that is slower (but always takes the same time), over a robot that is expected to reach the goal faster, but on occasion takes a very long time to arrive. We make several contributions that address this challenge. First, we bring to bear economic decision-making theory, to distinguish between different selection policies, based on risk (risk averse, risk seeking, etc.). Second, we introduce social regret (the difference between the actual travel time by the selected robot, and the hypothetical time of other robots) to augment decision-making in practice. Then, we carry out experiments in simulation and with real robots, to demonstrate the usefulness of the selection procedures under real-world settings, and find that travel-time distributions have repeating characteristics.
منابع مشابه
بهبود یادگیری رفتار روبات سیار دارای خطا در سنسورهای آن با استفاده از شبکه بیزین
In this paper a new structure based on Bayesian networks is presented to improve mobile robot behavior, in which there exist faulty robot sensors. If a robot likes to follow certain behavior in the environment to reach its goal, it must be capable of making inference and mapping based on prior knowledge and also should be capable of understanding its reactions on the environment over time. Old ...
متن کاملTopics in Multi - Robot Teamwork
In recent years there is a growing interest in multi-robots systems, where a group of N robots are working collaboratively in order to execute a given task. This thesis addresses two open challenges in multi-robot systems. The first is the challenge of deciding on which robot, out of a group of robots, should travel to a goal location, to carry out a task there. The second is the challenge of i...
متن کاملRobot Path Planning Using Cellular Automata and Genetic Algorithm
In path planning Problems, a complete description of robot geometry, environments and obstacle are presented; the main goal is routing, moving from source to destination, without dealing with obstacles. Also, the existing route should be optimal. The definition of optimality in routing is the same as minimizing the route, in other words, the best possible route to reach the destination. In most...
متن کاملA Study on Social Hope: A Grounded Theory Research
The present study aims to use the interpretive approach to investigate “social hope” from an emic point of view among Isfahan city residents. The research method is qualitative which uses grounded theory strategy. Based on the purposeful sampling method (Successive Theoretical Sampling) 20 people up to 15 years old participated in the present study and their interpretations of social hope were ...
متن کاملDynamic Modeling and Construction of a New Two-Wheeled Mobile Manipulator: Self-balancing and Climbing
Designing the self-balancing two-wheeled mobile robots and reducing undesired vibrations are of great importance. For this purpose, the majority of researches are focused on application of relatively complex control approaches without improving the robot structure. Therefore, in this paper we introduce a new two-wheeled mobile robot which, despite its relative simple structure, fulfills the req...
متن کامل